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Significant advances have been made in the design and 
characterization of molecular assemblies which, when photolyzed, 
undergo intramolecular electron or energy transfer.2 These 
reactions have typically been followed with use of transient 
electronic spectroscopy. This technique, however, suffers from 
the disadvantage that absorption bands tend to be broad and 
featureless, which can lead to ambiguous interpretations, especially 
where there is more than one absorbing chromophore. Time-
resolved resonance Raman spectroscopy has been successfully 
applied to the study of excited states and molecular assemblies,3"6 

but time-resolved infrared spectroscopy is particularly well-suited 
for complexes containing ligands such as CO or CN.7-8 Unlike 
the transient Raman experiment, infrared spectroscopy does not 
rely on resonance enhancement in the excited state since the 
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Figure 1. (A) Transient infrared absorption difference (AA) spectrum 
150 ns after 354.7 nm excitation (~250 MJ per pulse) of/ac-[Re'(bpy)-
(CO)3(4-Etpy)]+, 1 mM, in acetonitrile at room temperature. (B) 
Transient spectrum 200 ns after 354.7-nm excitation of [(phenXCO^Re1-
(NC)Run(CN)(bpy)2]+ in acetonitrile at room temperature. The con
centration was 4 mM in a 1-mm path-length cell with ca. 250 /iJ/pulse 
laser power. The solid line is a multi-Gaussian fit of the data. The 
experimental arrangement is described in ref 8. 

metal-CO and -CN stretching vibrations have high oscillator 
strengths, providing high sensitivity. We describe here a novel 
application of the technique to the elucidation of intramolecular 
energy transfer in the ligand-bridged complex [(phen)(CO)3Re'-
(NC)Ru"(CN)(bpy)2]+ (phenis l,10-phenanthroline;bpyis2,2'-
bipyridine).9 

In Figure 1B is shown the transient infrared difference spectrum 
obtained 200 ns after 354.7-nm excitation of [(phen)(CO)3-
ReKNC)Ru1KCNXbPy)2]+in CH3CN. At this wavelength, both 
Re1 — phen (~50%) and Ru" — bpy (~50%) transitions are 
excited. From nanosecond transient absorption experiments 
following laser flash photolysis, an intermediate appears during 
the laser pulse (~7 ns) and decays to the ground state with T = 
853 ns (k = 1.2 X 106 S"1).9 In the ground state, infrared bands 
are observed at 1920, 2028, 2078, and 2098 cm"1 in the region 
1800-2200 cm-1. The first two bands are v(CO) stretches, and 
the latter two are the terminal and bridging v(CN) stretches. 

In Figure IA is shown the transient spectrum for fac-
[Re'(bpy)(CO)3(4-Etpy)]+ (4-Etpy is 4-ethylpyridine) in CH3-
CN under the same conditions. Here Re1 -» bpy excitation at 
354.7 nm gives the metal-to-ligand charge transfer (MLCT) 
excited state.10 

[Re I (bpy)(CO) 3 (4-Etpy)] + -

[Re I I(bpy-)(CO)3(4-Etpy)]+ 

Infrared bleaches are observed at the ground state v(CO) 
energies 1931 and 2036 cm-1. Excited-state bands appear at 
1988, 2015, and 2075 cm-1. The increases (Ai/(CO) ~ 57, 84, 
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Scheme I 
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and 39 cm-1) are consistent with oxidation at the metal.11 The 
splitting of the 1930-cnr1 band into two bands in the excited 
state is expected upon reduction at bpy. In the ground state, the 
three N atoms bound to Re (two bpy, one pyridine) are nearly 
equivalent, giving effective C%v symmetry and two v(CO) bands. 
Formation of (bpy) lowers the symmetry to C1, and three v(CO) 
bands are active.12 

Following 354.7-nm excitation of [(phen)(CO)3Re'(NC)Run-
(CN)(bpy)2]+, the shifts in J»(CO) are much smaller (Av(CO) ~ 
5 cm-1), and the terminal v(CN) shifts from 2078 to 2135 cm-1. 
(The bridging J>(CN) does not appear in the spectrum; it may 
overlap the terminal v(CN) or have a lower oscillator strength.) 
These observations are consistent with oxidation states Re1 and 
Ru111 in the intermediate formed by laser flash photolysis. They 
also prove that rapid Ren(pnen--) - • Ru"(bpy) energy transfer 
occurred following Re1 - • phen excitation, Scheme I. 

The complex was further interrogated with use of ultrafast 
infrared measurements.13 At the earliest observable times in this 
experiment ( ~ 1 ps, Figure 2A), two transient CO bands appear 
between 1960 and 2010 cm"1 and a third at 2070 cm-1. These 
bands decay, and new bands grow at 1936 and 2040 cnr1 with 
T ~ 5-10 ps. The 1-ps difference spectrum is very similar to the 
nanosecond spectrum of jrac-[ReI(bpy)(CO)3(4-Etpy)]+(Figure 
IB), consistent with Ren(pnen~) at very early times.14-15 The 
CO features which grow and are shown in the spectrum 40 ps 
after excitation (Figure 2B) are consistent with the appearance 
of Ruin(bpy~) by comparison with the nanosecond results in Figure 
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Figure 2. (A) Transient spectrum 1 ps after 300 nm excitation of [(phen)-
(CO)3ReI(NC)RuII(CN)(bpy)2]

+ in acetonitrile at room temperature 
with instumentation as described in ref 13. (B) Transient spectrum 40 
ps after 300-nm excitation of [(phen)(CO)3ReI(NC)RuII(CN)(bpy)2]

+ 

in acetonitrile at room temperature. 

IA. These observations identify the initial MLCT excited state 
and allow an estimate to be made of the rate constant for energy 
transfer (k ~ 2 X 10" s-1), which is favored by ~0.4 eV. 

These results show that the transient infrared technique can 
be a powerful tool for the elucidation of oxidation state and 
mechanisms involving photochemical intermediates by direct 
observation of ligand vibrations. 
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